y=4(x^2-7/4x)-5

Simple and best practice solution for y=4(x^2-7/4x)-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y=4(x^2-7/4x)-5 equation:


x in (-oo:+oo)

y = 4*(x^2-((7/4)*x))-5 // - 4*(x^2-((7/4)*x))-5

y-(4*(x^2-((7/4)*x)))+5 = 0

y-4*(x^2+(-7/4)*x)+5 = 0

y-4*(x^2-7/4*x)+5 = 0

y-4*(x^2-7/4*x)+5 = 0

7*x-4*x^2+y+5 = 0

7*x-4*x^2+y+5 = 0

7*x-4*x^2+y+5 = 0

DELTA = 7^2-(-4*4*(y+5))

DELTA = 16*(y+5)+49

16*(y+5)+49 = 0

16*(y+5)+49 = 0

16*y+129 = 0

16*y+129 = 0

16*y+129 = 0 // - 129

16*y = -129 // : 16

y = -129/16

DELTA = 0 <=> t_3 = -129/16

x = -7/(-4*2) i y = -129/16

x = 7/8 i y = -129/16

( x = ((16*(y+5)+49)^(1/2)-7)/(-4*2) or x = (-(16*(y+5)+49)^(1/2)-7)/(-4*2) ) i y > -129/16

( x = ((16*(y+5)+49)^(1/2)-7)/(-8) or x = ((16*(y+5)+49)^(1/2)+7)/8 ) i y > -129/16

y-(-129/16) > 0

y+129/16 > 0

y+129/16 > 0 // - 129/16

y > -129/16

x in { 7/8, ((16*(y+5)+49)^(1/2)-7)/(-8), ((16*(y+5)+49)^(1/2)+7)/8 }

See similar equations:

| 2m/7=5 | | t/9.2=46 | | 1/3(6x+12)=4(x-2) | | T=.25x | | -2x+2y=20 | | d/.72=.12 | | a(a+5)=0 | | -32=-17-2d | | -6g-9=15 | | 12x+-4(x-10)=72 | | -n/36=9 | | 3056890000-1500000x=3000000000 | | x^7-x^5-4x^3+4x=0 | | -0.3x+2=-2 | | x^2/24+11x/24 | | w/8-3-2=7/8 | | 4x-4y = 40 | | (2+3i)+(7+i)=0 | | (3/-7)+(-7/5) | | 6x-5=5(x-3)+3 | | 12x+12y =72 | | 5x+3=60 | | x+3x^2-24=0 | | 8(-6-.025y)+5y=-168 | | 3.11x+14.96=7.83x-23.41 | | 10y=5y+9+4y | | x^2-5x-81=0 | | -4x/5+6=33 | | 6*x/7-2*x/21=25/21 | | 0.4x-9=13+0.10x | | n+n+1+n+2=-27 | | 12s^2-27s-27=0 |

Equations solver categories